Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.522
Filtrar
1.
Inhal Toxicol ; 36(3): 189-204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466202

RESUMO

OBJECTIVE: Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. MATERIALS AND METHODS: The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m3 DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. RESULTS: Exposure to 0.2 mg/m3 DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m3 DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. DISCUSSION AND CONCLUSIONS: Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Masculino , Ratos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Material Particulado/toxicidade , Biomarcadores , Exposição por Inalação/efeitos adversos
2.
Inhal Toxicol ; 36(2): 57-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422051

RESUMO

Many inhalation exposures induce pulmonary inflammation contributing to disease progression. Inflammatory processes are actively regulated via mediators including bioactive lipids. Bioactive lipids are potent signaling molecules involved in both pro-inflammatory and resolution processes through receptor interactions. The formation and clearance of lipid signaling mediators are controlled by multiple metabolic enzymes. An imbalance of these lipids can result in exacerbated and sustained inflammatory processes which may result in pulmonary damage and disease. Dysregulation of pulmonary bioactive lipids contribute to inflammation and pulmonary toxicity following exposures. For example, inhalation of cigarette smoke induces activation of pro-inflammatory bioactive lipids such as sphingolipids, and ceramides contributing to chronic obstructive pulmonary disease. Additionally, exposure to silver nanoparticles causes dysregulation of inflammatory resolution lipids. As inflammation is a common consequence resulting from inhaled exposures and a component of numerous diseases it represents a broadly applicable target for therapeutic intervention. With new appreciation for bioactive lipids, technological advances to reliably identify and quantify lipids have occurred. In this review, we will summarize, integrate, and discuss findings from recent studies investigating the impact of inhaled exposures on pro-inflammatory and resolution lipids within the lung and their contribution to disease. Throughout the review current knowledge gaps in our understanding of bioactive lipids and their contribution to pulmonary effects of inhaled exposures will be presented. New methods being employed to detect and quantify disruption of pulmonary lipid levels following inhalation exposures will be highlighted. Lastly, we will describe how lipid dysregulation could potentially be addressed by therapeutic strategies to address inflammation.


Assuntos
Pneumopatias , Nanopartículas Metálicas , Humanos , Exposição por Inalação/efeitos adversos , Prata , Inflamação/induzido quimicamente , Pneumopatias/induzido quimicamente , Ceramidas , Mediadores da Inflamação/metabolismo
3.
JAMA ; 331(10): 878-879, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38372993

RESUMO

This JAMA Insights in the Climate Change and Health Series defines thunderstorm asthma, describes its effects and increased rate of occurrence, and highlights recommendations for improved response during future events.


Assuntos
Asma , Mudança Climática , Processos Climáticos , Exposição por Inalação , Humanos , Alérgenos/efeitos adversos , Asma/epidemiologia , Asma/etiologia , Tempo (Meteorologia) , Exposição por Inalação/efeitos adversos
4.
Inhal Toxicol ; 36(2): 90-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38407183

RESUMO

OBJECTIVE: Nail salons offer a developing and diverse occupation for many women, especially the new generation. Due to the increasing apprehension surrounding heavy metals in dust caused by filing nails containing dried nail polish, the present study was designed aimed to health risk assessment of heavy metals in breathing zone of nail salon technicians (NSTs). METHODS: This is a cross-sectional study that was conducted in NSTs. The concentration of Cadmium (Cd), Lead (Pb), Nickel (Ni), Chromium (Cr) and Manganese (Mn)in breathing zone of 20 NSTs was determined using ICP-OES. RESULTS: The metal concentrations were in the following order: Mn > Pb > Ni > Cr > Cd with corresponding arithmetic mean values of0.008, 0.0023, 0.0021, 0.001 and 0.0006 mg m-3, respectively, which are exceeded the recommended levels stated in the indoor air guidelines. The average lifetime carcinogenic risk (LCR) for Cr, Cd, Ni and Pb was calculated 0.0084, 0.00054, 0.00026 and 1.44 E - 05, respectively. The LCR values of all metals (except Pb) exceeded the acceptable level set by the USEPA. The mean of Hazard quotients (HQ) for Mn, Cd, Cr, Ni and Pb were calculated to be23.7, 4.74, 2.19, 0.51 and 0.0.24, respectively. The sensitivity analysis showed that, the exposure frequency (EF) for Cr and Ni had the strong effects on generation of both LCR and HQ. Furthermore, the concentrations of Mn, Cd and Pb had strong impacts on the HQ generation and the concentration of Cd and Pb had main effects on LCR generation. CONCLUSION: To effectively reduce pollutant concentration, it is recommended to install a ventilation system near nail salon work tables and conduct continuous monitoring and quality control of nail products.


Assuntos
Cádmio , Metais Pesados , Humanos , Feminino , Cádmio/análise , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Monitoramento Ambiental , Método de Monte Carlo , Estudos Transversais , Chumbo/análise , Unhas/química , Metais Pesados/toxicidade , Metais Pesados/análise , Cromo/toxicidade , Níquel/toxicidade , Manganês , Medição de Risco , China
5.
Environ Int ; 184: 108481, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330748

RESUMO

Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.


Assuntos
Poluentes Atmosféricos , Ratos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Biocombustíveis , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Material Particulado/análise , Carbono , Inflamação
6.
Environ Pollut ; 347: 123633, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423272

RESUMO

Nanoplastics are widely distributed in indoor and outdoor air and can be easily inhaled into human lungs. However, limited studies have investigated the impact of nanoplastics on inhalation toxicities, especially on the initiation and progression of chronic obstructive pulmonary disease (COPD). To fill the gap, the present study used oronasal aspiration to develop mice models. Mice were exposed to polystyrene nanoplastics (PS-NPs) at three concentrations, as well as the corresponding controls, for acute, subacute, and subchronic exposure. As a result, PS-NPs could accumulate in exposed mice lungs and influence lung organ coefficient. Besides, PS-NPs induced local and systemic oxidative stress, inflammation, and protease-antiprotease imbalance, resulting in decreased respiratory function and COPD-like lesions. Meanwhile, PS-NPs could trigger the subcellular mechanism to promote COPD development by causing mitochondrial dysfunctions and endoplasmic reticulum (ER) stress. Mechanistically, ferroptosis played an important role in the COPD-like lung injury induced by PS-NPs. In summary, the present study comprehensively and systematically indicates that PS-NPs can damage human respiratory health and increase the risk for COPD.


Assuntos
Lesão Pulmonar , Nanopartículas , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Exposição por Inalação/efeitos adversos , Microplásticos , Poliestirenos/toxicidade , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente
7.
N Engl J Med ; 390(1): 32-43, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38169488

RESUMO

BACKGROUND: Exposure to household air pollution is a risk factor for severe pneumonia. The effect of replacing biomass cookstoves with liquefied petroleum gas (LPG) cookstoves on the incidence of severe infant pneumonia is uncertain. METHODS: We conducted a randomized, controlled trial involving pregnant women 18 to 34 years of age and between 9 to less than 20 weeks' gestation in India, Guatemala, Peru, and Rwanda from May 2018 through September 2021. The women were assigned to cook with unvented LPG stoves and fuel (intervention group) or to continue cooking with biomass fuel (control group). In each trial group, we monitored adherence to the use of the assigned cookstove and measured 24-hour personal exposure to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) in the women and their offspring. The trial had four primary outcomes; the primary outcome for which data are presented in the current report was severe pneumonia in the first year of life, as identified through facility surveillance or on verbal autopsy. RESULTS: Among 3200 pregnant women who had undergone randomization, 3195 remained eligible and gave birth to 3061 infants (1536 in the intervention group and 1525 in the control group). High uptake of the intervention led to a reduction in personal exposure to PM2.5 among the children, with a median exposure of 24.2 µg per cubic meter (interquartile range, 17.8 to 36.4) in the intervention group and 66.0 µg per cubic meter (interquartile range, 35.2 to 132.0) in the control group. A total of 175 episodes of severe pneumonia were identified during the first year of life, with an incidence of 5.67 cases per 100 child-years (95% confidence interval [CI], 4.55 to 7.07) in the intervention group and 6.06 cases per 100 child-years (95% CI, 4.81 to 7.62) in the control group (incidence rate ratio, 0.96; 98.75% CI, 0.64 to 1.44; P = 0.81). No severe adverse events were reported to be associated with the intervention, as determined by the trial investigators. CONCLUSIONS: The incidence of severe pneumonia among infants did not differ significantly between those whose mothers were assigned to cook with LPG stoves and fuel and those whose mothers were assigned to continue cooking with biomass stoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Assuntos
Poluição do Ar em Ambientes Fechados , Biomassa , Culinária , Exposição por Inalação , Petróleo , Pneumonia , Feminino , Humanos , Lactente , Gravidez , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Culinária/métodos , Material Particulado/efeitos adversos , Material Particulado/análise , Petróleo/efeitos adversos , Pneumonia/etiologia , Adolescente , Adulto Jovem , Adulto , Internacionalidade , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/etiologia
8.
NanoImpact ; 33: 100493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219948

RESUMO

The use of modelling tools in the occupational hygiene community has increased in the last years to comply with the different existing regulations. However, limitations still exist mainly due to the difficulty to obtain certain key parameters such as the emission rate, which in the case of powder handling can be estimated using the dustiness index (DI). The goal of this work is to explore the applicability and usability of the DI for emission source characterization and occupational exposure prediction to particles during nanomaterial powder handling. Modelling of occupational exposure concentrations of 13 case scenarios was performed using a two-box model as well as three nano-specific tools (Stoffenmanager nano, NanoSafer and GUIDEnano). The improvement of modelling performance by using a derived handling energy factor (H) was explored. Results show the usability of the DI for emission source characterization and respirable mass exposure modelling of powder handling scenarios of nanomaterials. A clear improvement in modelling outcome was obtained when using derived quartile-3 H factors with, 1) Pearson correlations of 0.88 vs. 0.52 (not using H), and 2) ratio of modelled/measured concentrations ranging from 0.9 to 10 in 75% cases vs. 16.7% of the cases when not using H. Particle number concentrations were generally underpredicted. Using the most conservative H values, predictions with ratios modelled/measured concentrations of 0.4-3.6 were obtained.


Assuntos
Poluentes Ocupacionais do Ar , Nanoestruturas , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Pós , Exposição por Inalação/efeitos adversos , Monitoramento Ambiental/métodos , Nanoestruturas/efeitos adversos
9.
J Toxicol Sci ; 49(2): 49-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296528

RESUMO

Drosophila melanogaster (D. melanogaster) is a promising model biological system. It has a short life cycle and can provide a substantial number of specimens suitable for comprehensive genetic and molecular analyses in a short time. In this study, we investigated the acute inhalation toxicity of methylisothiazolinone (MIT) and chloromethylisothiazolinone (CMIT) in a D. melanogaster model. During exposure, environmental conditions, mass median aerodynamic and geometric standard diameters were measured. After inhalation exposure, the survival rate, climbing ability, and bang sensitivity were measured on days 1, 2, and 7. Notably, the survival rate of flies decreased in an exposure concentration-dependent manner. Climbing ability and bang sensitivity were also altered in the MIT/CMIT group, compared with the negative control group. Overall, these results provide a reliable D. melanogaster model system for inhalation toxicity study.


Assuntos
Drosophila melanogaster , Exposição por Inalação , Tiazóis , Animais , Drosophila melanogaster/genética , Modelos Animais , Exposição por Inalação/efeitos adversos
10.
J Appl Toxicol ; 44(3): 470-483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37876240

RESUMO

Extensive, long-term exposure to cigarette smoke (CS) was recently suggested to be a risk factor for pulmonary hypertension, although further validation is required. The vascular effects of CS share similarities with the etiology of pulmonary hypertension, including vascular inflammation and remodeling. Thus, we examined the influence of CS exposure on the pathogenesis of monocrotaline (MCT)-induced pulmonary hypertension, hypothesizing that smoking might accelerate the development of primed pulmonary hypertension. CS was generated from 3R4F reference cigarettes, and rats were exposed to CS by inhalation at total particulate matter concentrations of 100-300 µg/L for 4 h/day, 7 days/week for 4 weeks. Following 1 week of initial exposure, rats received 60 mg/kg MCT and were sacrificed and analyzed after an additional 3 weeks of exposure. MCT induced hypertrophy in pulmonary arterioles and increased the Fulton index, a measure of right ventricular hypertrophy. Additional CS exposure exacerbated arteriolar hypertrophy but did not further elevate the Fulton index. No significant alterations were observed in levels of endothelin-1 and vascular endothelial growth factor, or in hematological and serum biochemical parameters. Short-term inhalation exposure to CS exacerbated arteriolar hypertrophy in the lung, although this effect did not directly aggravate the overworked heart under the current experimental conditions.


Assuntos
Fumar Cigarros , Hipertensão Pulmonar , Ratos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Monocrotalina/toxicidade , Monocrotalina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Exposição por Inalação/efeitos adversos , Ratos Sprague-Dawley , Hipertrofia , Artéria Pulmonar/patologia
11.
ALTEX ; 41(1): 91-103, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37843016

RESUMO

In vitro methods provide a key opportunity to model human-relevant exposure scenarios for hazard identification of inhaled toxicants. Compared to in vivo tests, in vitro methods have the advantage of assessing effects of inhaled toxicants caused by differences in dosimetry, e.g., variations in con­centration (exposure intensity), exposure duration, and exposure frequency, in an easier way. Variations in dosimetry can be used to obtain information on adverse effects in human-relevant exposure scenarios that can be used for risk assessment. Based on the published literature of exposure approaches using air-liquid interface models of the respiratory tract, supplemented with additional experimental data from the EU H2020 project "PATROLS" and research funded by the Dutch Ministry of Agriculture, Nature and Food Quality, the advantages and disadvantages of dif­ferent exposure methods and considerations to design an experimental setup are summarized and discussed. As the cell models used are models for the respiratory epithelium, our focus is on the local effects in the airways. In conclusion, in order to generate data from in vitro methods for risk assessment of inhaled toxicants it is recommended that (1) it is considered what information really is needed for hazard or risk assessment; (2) the exposure system that is most suitable for the chemical to be assessed is chosen; (3) a deposited dose that mimics deposition in the human respiratory tract is used, and (4) the post-exposure sampling methodology should be carefully considered and relevant to the testing strategy used.


The impact of airborne pollutants on human health is determined by what pollutant it is, how much we breathe in, for how long and how often. Testing in animals is cumbersome and results may not reflect human health impacts. Advanced cell models of the human lung allow prediction of the health impact of many different exposure scenarios. Here, we compare different models and exposure methods and provide criteria that may assist in designing experiments, interpreting the results, and thus assessing the risks posed by airborne pollutants. We recommend (1) determining what infor­mation is needed to plan the experiment, (2) choosing an exposure method that is suitable for the pollutant of interest, (3) determining the amount of pollutant that interacts with the human lung, to relate this to realistic deposition in the lung, and (4) considering the time between the exposure and measurement of the effect.


Assuntos
Exposição por Inalação , Sistema Respiratório , Humanos , Exposição por Inalação/efeitos adversos , Medição de Risco/métodos , Substâncias Perigosas/toxicidade
12.
Cytokine ; 173: 156419, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976700

RESUMO

Coal dust is the main occupational hazard factor during coal mining operations. This study aimed to investigate the role of macrophage polarization and its molecular regulatory network in lung inflammation and fibrosis in Sprague-Dawley rats caused by coal dust exposure. Based on the key exposure parameters (exposure route, dose and duration) of the real working environment of coal miners, the dynamic inhalation exposure method was employed, and a control group and three coal dust groups (4, 10 and 25 mg/m3) were set up. Lung function was measured after 30, 60 and 90 days of coal dust exposure. Meanwhile, the serum, lung tissue and bronchoalveolar lavage fluid were collected after anesthesia for downstream experiments (histopathological analysis, RT-qPCR, ELISA, etc.). The results showed that coal dust exposure caused stunted growth, increased lung organ coefficient and decreased lung function in rats. The expression level of the M1 macrophage marker iNOS was significantly upregulated in the early stage of exposure and was accompanied by higher expression of the inflammatory cytokines TNF-α, IL-1ß, IL-6 and the chemokines IL-8, CCL2 and CCL5, with the most significant trend of CCL5 mRNA in lung tissues. Expression of the M2 macrophage marker Arg1 was significantly upregulated in the mid to late stages of coal dust exposure and was accompanied by higher expression of the anti-inflammatory cytokines IL-10 and TGF-ß. In conclusion, macrophage polarization and its molecular regulatory network (especially CCL5) play an important role in lung inflammation and fibrosis in SD rats exposed to coal dust by dynamic inhalation.


Assuntos
Exposição por Inalação , Pneumonia , Ratos , Animais , Ratos Sprague-Dawley , Exposição por Inalação/efeitos adversos , Pneumonia/induzido quimicamente , Fibrose , Poeira , Citocinas/metabolismo , Macrófagos/metabolismo , Carvão Mineral
13.
Sci Rep ; 13(1): 22239, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097754

RESUMO

Metal fume fever (MFF) is a work-related disease caused by the inhalation of metal particles, including zinc oxide. Chronic asthma may develop as a long-term consequence of exposure, particularly for welders and metal workers who are most at risk. In this study, we investigated the effects of ZnO fume inhalation on multiple inflammation-related cytokine- and cytokine receptor genes in mice from lung and lymph node samples, to explore the role of these in the pathogenesis of MFF. In our experiments, the animals were treated with a sub-toxic amount of ZnO fume for 4 h a day for 3 consecutive days. Sampling occurred 3 and 12 h post-treatment. We are the first to demonstrate that ZnO inhalation causes extremely increased levels of IL-17f gene expression at both sampling time points, in addition to increased gene expression rates of several other interleukins and cytokines, such as IL-4, IL-13, CXCL5, CSF-3, and IFN-γ. Our animal experiment provides new insights into the immunological processes of early metal fume fever development. IL-17f plays a crucial role in connecting immunological and oxidative stress events. The increased levels of IL-4 and IL-13 cytokines may explain the development of long-term allergic asthma after exposure to ZnO nanoparticles, which is well-known among welders, smelters, and metal workers.


Assuntos
Asma , Soldagem , Óxido de Zinco , Camundongos , Animais , Óxido de Zinco/toxicidade , Interleucina-13 , Interleucina-4 , Citocinas/metabolismo , Asma/induzido quimicamente , Imunidade , Exposição por Inalação/efeitos adversos
14.
Ann Agric Environ Med ; 30(4): 611-616, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38153062

RESUMO

INTRODUCTION AND OBJECTIVE: Endotoxins from gram-negative bacteria might be released when the coffee cherries are processed and may cause respiratory health problems among workers in the coffee industry. The relationship between bacterial contamination and occupational exposure to endotoxin levels has not been thoroughly explored previously in primary coffee processing factories in Ethiopia, or elsewhere. The aim of this study was to characterize the level of personal endotoxin exposure and its relations with bacterial contamination of coffee cherries in such factories in Ethiopia. MATERIAL AND METHODS: A cross-sectional study was conducted from March 2020 - February 2021 in 9 primary coffee processing factories in 3 regions in Ethiopia. A total of 180 personal air samples were collected to analyze workers' exposure to inhalable dust and endotoxin. Correlation tests were performed to assess the relationship between total bacteria and endotoxin levels and between inhalable dust and endotoxin levels. RESULTS: The geometric mean (GM) of personal inhalable dust exposure among machine room workers and hand pickers were 9.58 mg/m3 and 2.56 mg/m3, respectively. The overall GM of endotoxin exposure among machine room workers and hand pickers were 10,198 EU/m3 and 780 EU/m3, respectively. Gram-negative bacteria were found in all 54 coffee samples. The correlation between inhalable dust and endotoxin exposure was significant (r=0.80; P <0.01). CONCLUSIONS: About 92% of the samples from hand pickers and all samples from machine room workers exceeded the occupational exposure limit of 90 EU/m3 recommended by the Dutch Expert Committee on Occupational Standards. Prevention and control of bacterial contamination of the coffee in primary coffee processing are suggested to reduce endotoxin exposure that might cause respiratory health problems among coffee workers.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Poluentes Ocupacionais do Ar/análise , Endotoxinas/análise , Poeira/análise , Café , Etiópia , Estudos Transversais , Monitoramento Ambiental , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Bactérias , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise
15.
Part Fibre Toxicol ; 20(1): 40, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875960

RESUMO

BACKGROUND: The understanding of inhaled particle respiratory tract deposition is a key link to understand the health effects of particles or the efficiency for medical drug delivery via the lung. However, there are few experimental data on particle respiratory tract deposition, and the existing data deviates considerably when comparing results for particles > 1 µm. METHODS: We designed an experimental set-up to measure deposition in the respiratory tract for particles > 1 µm, more specifically 2.3 µm, with careful consideration to minimise foreseen errors. We measured the deposition in seventeen healthy adults (21-68 years). The measurements were performed at tidal breathing, during three consecutive 5-minute periods while logging breathing patterns. Pulmonary function tests were performed, including the new airspace dimension assessment (AiDA) method measuring distal lung airspace radius (rAiDA). The lung characteristics and breathing variables were used in statistical models to investigate to what extent they can explain individual variations in measured deposited particle fraction. The measured particle deposition was compared to values predicted with whole lung models. Model calculations were made for each subject using measured variables as input (e.g., breathing pattern and functional residual capacity). RESULTS: The measured fractional deposition for 2.3 µm particles was 0.60 ± 0.14, which is significantly higher than predicted by any of the models tested, ranging from 0.37 ± 0.08 to 0.53 ± 0.09. The multiple-path particle dosimetry (MPPD) model most closely predicted the measured deposition when using the new PNNL lung model. The individual variability in measured particle deposition was best explained by breathing pattern and distal airspace radius (rAiDA) at half inflation from AiDA. All models underestimated inter-subject variability even though the individual breathing pattern and functional residual capacity for each participant was used in the model. CONCLUSIONS: Whole lung models need to be tuned and improved to predict the respiratory tract particle deposition of micron-sized particles, and to capture individual variations - a variation that is known to be higher for aged and diseased lungs. Further, the results support the hypothesis that the AiDA method measures dimensions in the peripheral lung and that rAiDA, as measured by the AiDA, can be used to better understand the individual variation in the dose to healthy and diseased lungs.


Assuntos
Pulmão , Respiração , Adulto , Humanos , Idoso , Tamanho da Partícula , Testes de Função Respiratória , Exposição por Inalação/efeitos adversos , Aerossóis
16.
Epidemiol Health ; 45: e2023095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905312

RESUMO

OBJECTIVES: Inhalation exposure to humidifier disinfectants has resulted to various types of health damages in Korea. To determine the epidemiological correlation necessary for presuming the legal causation, we aimed to develop a method to synthesize the entire evidence. METHODS: Epidemiological and toxicological studies are systematically reviewed. Target health problems are selected by criteria such as frequent complaints of claimants. Relevant epidemiologic studies are reviewed and the risk of bias and confidence level of the total evidence are evaluated. Toxicological literature reviews are conducted on three lines of evidence including hazard information, animal studies, and mechanistic studies, considering the source-to-exposure-to-outcome continuum. The confidence level of the body of evidence is then translated into the toxicological evidence levels for the causality between humidifier disinfectant exposure and health effects. Finally, the levels of epidemiological and toxicological evidence are synthesized. RESULTS: Under the Special Act revised in 2020, if the history of exposure and the disease occurred/worsened after exposure were approved, and the epidemiological correlation between the exposure and disease was verified, the legal causation is presumed unless the company proves the evidence against it. The epidemiological correlation can be verified through epidemiological investigations, health monitoring, cohort investigations and/or toxicological studies. It is not simply as statistical association as understood in judicial precedents, but a general causation established by the evidence as a whole, i.e., through weight-of-the-evidence approach. CONCLUSIONS: The weight-of-the-evidence approach differs from the conclusive single study approach and this systematic evidence integration can be used in presumption of causation.


Assuntos
Desinfetantes , Umidificadores , Animais , Humanos , Desinfetantes/toxicidade , Exposição por Inalação/efeitos adversos , Causalidade
17.
J Aerosol Med Pulm Drug Deliv ; 36(5): 275-280, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37851976

RESUMO

Pharmacodynamics (PD) is discussed in relation to inhalation exposure to inhaled pharmaceutical and toxic agents. Clearly PD is closely related to pharmacokinetics, and this relation is illustrated with reference to inhaled insulin. PD can be related to pharmacologic responses, and some examples are cited. However, PD can also be thought of as the improvement or deterioration in lung disease state. Some of the major PD endpoints, including histopathology, pulmonary function, and bronchoalveolar lavage are reviewed. Brief reference is also given to other specialty biomarkers of PD response.


Assuntos
Exposição por Inalação , Pulmão , Administração por Inalação , Líquido da Lavagem Broncoalveolar , Exposição por Inalação/efeitos adversos
18.
Regul Toxicol Pharmacol ; 145: 105518, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863417

RESUMO

The toxicokinetics of manganese (Mn) are controlled through homeostasis because Mn is an essential element. However, at elevated doses, Mn is also neurotoxic and has been associated with respiratory, reproductive, and developmental effects. While health-based criteria have been developed for chronic inhalation exposure to ambient Mn, guidelines for short-term (24-h) environmental exposure are also needed. We reviewed US state, federal, and international health-based inhalation toxicity criteria, and conducted a literature search of recent publications. The studies deemed most appropriate to derive a 24-h guideline have a LOAEL of 1500 µg/m3 for inflammatory airway changes and biochemical measures of oxidative stress in the brain following 90 total hours of exposure in monkeys. We applied a cumulative uncertainty factor of 300 to this point of departure, resulting in a 24-h guideline of 5 µg/m3. To address uncertainty regarding potential neurotoxicity, we used a previously published physiologically based pharmacokinetic model for Mn to predict levels of Mn in the brain target tissue (i.e., globus pallidus) for exposure at 5 µg/m3 for two short-term human exposure scenarios. The PBPK model predictions support a short-term guideline of 5 µg/m3 as protective of both respiratory effects and neurotoxicity, including exposures of infants and children.


Assuntos
Manganês , Modelos Biológicos , Lactente , Criança , Humanos , Exposição Ambiental , Exposição por Inalação/efeitos adversos , Homeostase
19.
Toxicology ; 499: 153642, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37863466

RESUMO

New Approach Methodologies (NAMs) are being widely used to reduce, refine, and replace, animal use in studying toxicology. For respiratory toxicology, this includes both in silico and in vitro alternatives to replace traditional in vivo inhalation studies. 1,3-Dichloropropene (1,3-DCP) is a volatile organic compound that is widely used in agriculture as a pre-planting fumigant. Short-term exposure of humans to 1,3-DCP can result in mucous membrane irritation, chest pain, headache, and dizziness. In our previous work, we exposed differentiated cells representing different parts of the respiratory epithelium to 1,3-DCP vapor, measured cytotoxicity, and did In Vitro to In Vivo Extrapolation (IVIVE). We have extended our previous study with 1,3-DCP vapors by conducting transcriptomics on acutely exposed nasal cultures and have implemented a separate 5-day repeated exposure with multiple endpoints to gain further molecular insight into our model. MucilAir™ Nasal cell culture models, representing the nasal epithelium, were exposed to six sub-cytotoxic concentrations of 1,3-DCP vapor at the air-liquid interface, and the nasal cultures were analyzed by different methodologies, including histology, transcriptomics, and glutathione (GSH) -depletion assays. We observed the dose-dependent effect of 1,3-DCP in terms of differential gene expression, change in cellular morphology from pseudostratified columnar epithelium to squamous epithelium, and depletion of GSH in MucilAir™ nasal cultures. The MucilAir™ nasal cultures were also exposed to 3 concentrations of 1,3-DCP using repeated exposure 4 h per day for 5 days and the histological analyses indicated changes in cellular morphology and a decrease in ciliated bodies and an increase in apoptotic bodies, with increasing concentrations of 1,3-DCP. Altogether, our results suggest that sub-cytotoxic exposures to 1,3-DCP lead to several molecular and cellular perturbations, providing significant insight into the mode-of-action (MoA) of 1,3-DCP using an innovative NAM model.


Assuntos
Compostos Alílicos , Hidrocarbonetos Clorados , Praguicidas , Humanos , Animais , Determinação de Ponto Final , Administração por Inalação , Compostos Alílicos/toxicidade , Compostos Alílicos/metabolismo , Hidrocarbonetos Clorados/toxicidade , Exposição por Inalação/efeitos adversos
20.
JAMA ; 330(14): 1311-1314, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37733695

RESUMO

This Medical News article discusses why wildfires are intensifying and how to stay safe from residual smoke.


Assuntos
Poluentes Atmosféricos , Fumaça , Incêndios Florestais , Humanos , Poluentes Atmosféricos/efeitos adversos , Fumaça/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição por Inalação/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...